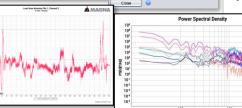
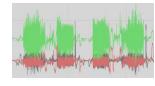


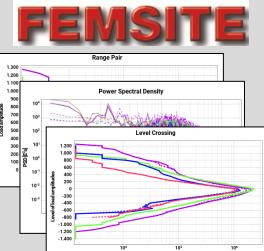
FEMSITE 4.8 Pushing the Limits

Introduction of Modules and Functionalities

FEMSITE: Modules and Functionalities


Module FEMSITE Load Analysis




Virtual and / or physical road load data

Analysis of measured or calculated load spectra.

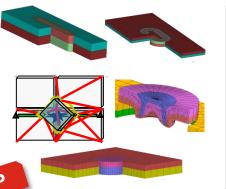
Supports a variety of established data formats, as for example:

Diadem/Diadago, RPCIII, RigSys, DASYLab, Adams, DADS, ASCII, TDM, etc.

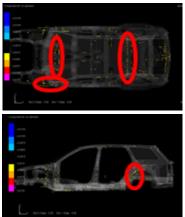
Large number of evaluations available such as PSD, rainflow matrices, statistic values,...

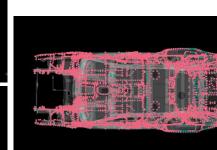
Main functions are:

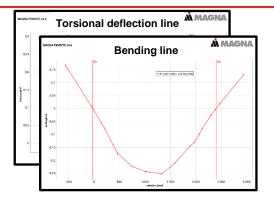
- load spectra comparison
- selective shortening
- MBS/FEM interface
- signal editing
- representative lap
- shaker program generation
- block program generation


Transformed and / or selective shortened load time histories will be used on test rigs or for simulation

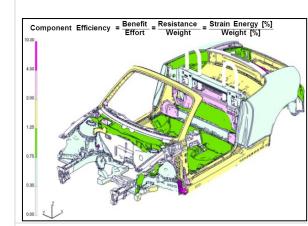
1/26/2024


Module FEMSITE Fatigue – Part 1


Node independent generation of joining technique without any modification of mesh. Also available as interface in preprocessors Medina, Hypermesh and ANSA



Identification of **stress conditions** of **spotwelds**, areas with **high deformation** in a **flange** based on several load cases in early project phases. **optimization** regarding number and position.



Global characteristics of a car body such as **torsion**, **bending stiffness** and other evaluations available.

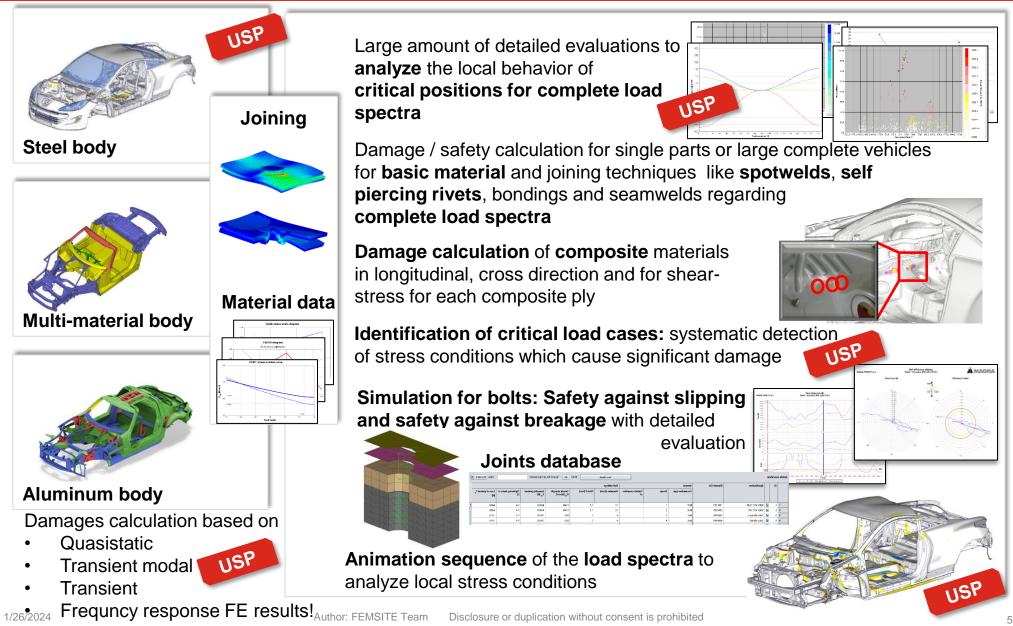
Component related evaluations to identify parts which have a large influence on a certain load case.

Variante	1/2 Variante 1	Variante 1			Variante 2									
Lastfall	Torsion		Biegung											
Erstelldatum 21.Nov.12 21.Nov.12							1							
Netz	Bezeichnung Variante:		Spannung [N/mm2]		Dicke (mm)		Element- anzahl		Masse [kg]		Verformungsarbeit [% von Auswertegr.]		Nutzungs - zahl [-]	
1.110.25		1	2	1	2	1	2	1	2	1	2	1	2	
1105	HALTEBOCK HILFSR, HI re	28,93	2,77	1,75	1,75	336	335	0.421	0.421	0.049	0.014	0.390	0,111	
1110	SCHWELLER AUSSEN II	55.63	11.94	1,75	1,75	3154	3154	9,009	9,009	3,220	3,292	1,203	1.230	
1145	SCHWELLER AUSSEN re	56.56	12.23	1.75	1,75	3142	3142	9.002	9.002	3,340	3,446	1,249	1,288	
115	DECKBLECH LTR Ted 1 re	3.59	1,87	1,60	1,60	246	246	0.379	0.379	0.007	0.002	0.053	0.017	
1180	SITZQUERTRAEGER II	29.63	74.12	0,70	0,70	2260	2260	1.953	1,953	0.332	7,546	0,573	13:002	
1185	SITZQUERTRAEGER re	31,01	82.84	0,70	0,70	2242	2242	1,954	1,954	0,332	7,392	0.573	12-782	
120	LTR VO TEIL 1 li	15,59	0.30	2,00	2,00	467	467	0.873	0,873	0.049	0,000	0,187	0.001	
1205	VST FUEHRUNGSSCH VO	4.41	69,65	2.00	2.00	256	256	0.341	0.341	0.004	7,562	0.042	74.578	
1235	VST FUEHRUNGSSCH HI	5.91	31.27	2,00	2,00	176	176	0,359	0,359	0,008	1,707	0.075	16,000	
1240	ABSCHLUSSTEIL TUNNELBR, II	53,06	51,57	1,00	1,00	999	999	1,245	1,245	0,296	2,421	0,807	6,546	
125	LTR VO TEIL 1 re	5.87	0,40	2.00	2.00	483	483	0.887	0.837	0.029	0.001	0,111	0,003	
1250	ABSCHLUSSTEIL TUNNELBR, re	54,84	38,29	1,00	1,00	998	998	1,242	1,242	0,310	2,069	0,839	5,605	
1275	VST FERSENBLECH	15,15	35.42	1.25	1.25	1498	1498	1,926	1,926	0,150	2,798	0.262	4,890	
1290	ZWISCHENSTUECK LTR II	26.50	15.80	1.75	1.75	330	330	0.432	0.432	0.197	0.532	1.537	4.141	

MAGNA FEMSITE v4.1	CarBody - PlotEl's
Element ID	Change in length [mm]
front_door_left	
Load Case 100, Group 401	
131	0,184937
132	-0,150879
front_door_left	
Load Case 200, Group 401	
131	-0,015503
132	-0,033203

v49: Ecological footprint

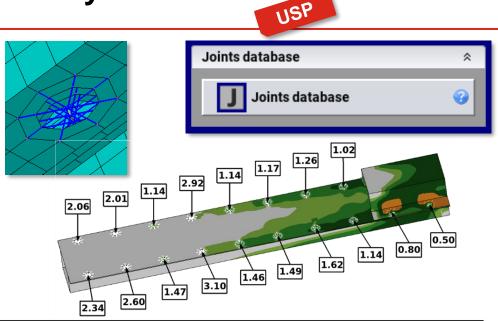
Different input and output interfaces available:

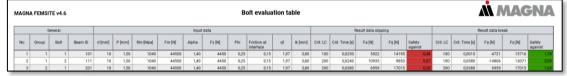

- Nastran: op2, Bulk Data
- Patran: Neutral file format
- Abaqus: odb

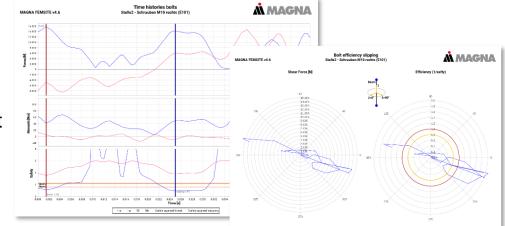
- Medina: bif / bof
- Universal file format

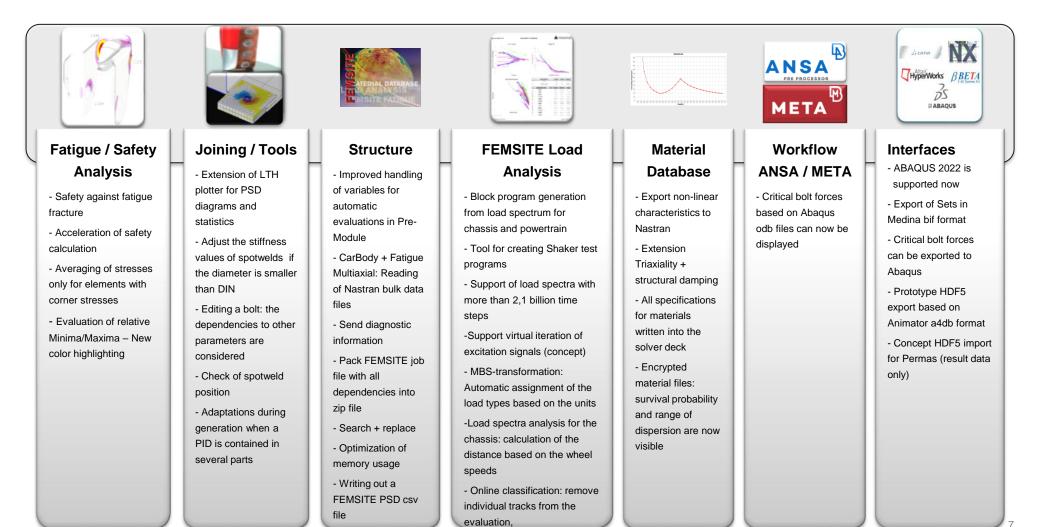
USP

Module FEMSITE Fatigue – Part 2






Module FEMSITE Fatigue – Bolt safety calculation


- FEMSITE supports efficient bolt safety calculations (safety against slipping & safety against overload breakage) in time domain
- Bolt types are managed in the central FEMSITE
 Joints database
- Bolts can be easily defined in preprocessor Ansa.
- Export of the results for common postprocessors is available
- Special detailed evaluations can be performed in FEMSITE
 - Bolt evaluation table
 - Time-history plots of bolt forces, moments and safety values
 - Bolt efficiency slipping
- Recalculation of the bolts allows the user to modify bolt parameters and quickly rerun the bolt calculation without FE- solver
- Basic load cases bolts allows the user to directly study basic load cases from an FEcalculation
 1/26/2024

Five reasons to develop structure and durability with FEMSITE

- **FEMSITE** is a workflow oriented software which covers the complete development process for automotive industry including **stiffness**, **strength and durability**
- FEMSITE Load Analysis for processing and validation of load spectra
- FEMSITE can handle very large models (~10,000,000 elements) with full joining technique for complete load spectra. Very short calculation time due to DMP-parallelization and intelligent filtering of elements and/or cutting planes use
- FEMSITE is best in class regarding the cost / functionality ratio
- FEMSITE has been developed and validated in many project applications across the OEMs for more than 25 years

contact persons:

s: gerhard.kepplinger@magna.com phone: +43 664 8840 2973

m.hofer@magna.com phone: +43 664 8840 5748